Энергетические процессы в организме. Энергетические процессы в организме Клеточное дыхание — основа жизни

Биология (от греческих слов bios – жизнь, logos – учение) – это наука, изучающая живые организмы и явления живой природы.

Предметом изучения биологии является многообразие живых организмов, населяющих Землю.

Свойства живой природы. Все живые организмы обладают рядом общих признаков и свойств, которые отличают их от тел неживой природы. Это особенности строения, обмен веществ, движение, рост, размножение, раздражимость, саморегуляция. Остановимся на каждом из перечисленных свойств живой материи.

Высокоупорядоченное строение. Живые организмы состоят из химических веществ, которые имеют более высокий уровень организации, чем вещества неживой природы. Все организмы имеют определенный план строения – клеточный или неклеточный (вирусы).

Обмен веществ и энергии – это совокупность процессов дыхания, питания, выделения, посредством которых организм получает из внешней среды необходимые ему вещества и энергию, преобразует и накапливает их в своем организме и выделяет в окружающую среду продукты жизнедеятельности.

Раздражимость – это ответная реакция организма на изменения окружающей среды, помогающая ему адаптироваться и выжить в изменяющихся условиях. При уколе иглой человек отдергивает руку, а гидра сжимается в комочек. Растения поворачиваются к свету, а амеба удаляется от кристаллика поваренной соли.

Рост и развитие. Живые организмы растут, увеличиваются в размерах, развиваются, изменяются благодаря поступлению питательных веществ.

Размножение – способность живого к самовоспроизведению. Размножение связано с явлением передачи наследственной информации и является самым характерным признаком живого. Жизнь любого организма ограничена, но в результате размножения живая материя «бессмертна».

Движение. Организмы способны к более или менее активному движению. Это один из ярких признаков живого. Движение происходит и внутри организма, и на уровне клетки.

Саморегуляция. Одним из самых характерных свойств живого является постоянство внутренней среды организма при изменяющихся внешних условиях. Регулируются температура тела, давление, насыщенность газами, концентрация веществ и т. д. Явление саморегуляции осуществляется не только на уровне всего организма, но и на уровне клетки. Кроме того, благодаря деятельности живых организмов саморегуляция присуща и биосфере в целом. Саморегуляция связана с такими свойствами живого, как наследственность и изменчивость.

Наследственность – это способность передавать признаки и свойства организма из поколения в поколение в процессе размножения.

Изменчивость – это способность организма изменять свои признаки при взаимодействии со средой.

В результате наследственности и изменчивости живые организмы приспосабливаются, адаптируются к внешним условиям, что позволяет им выжить и оставить потомство.

§ 44. Строение клетки

Большинство живых организмов имеет клеточное строение. Клетка – это структурная и функциональная единица живого. Для нее характерны все признаки и функции живых организмов: обмен веществ и энергии, рост, размножение, саморегуляция. Клетки различны по форме, размеру, функциям, типу обмена веществ (рис. 47).

Рис. 47. Разнообразие клеток: 1 – эвглена зеленая; 2 – бактерия; 3 – растительная клетка мякоти листа; 4 – эпителиальная клетка; 5 – нервная клетка


Размеры клеток варьируют от 3-10 до 100 мкм (1 мкм = 0,001 м). Реже встречаются клетки размером менее 1–3 мкм. Существуют также и клетки-гиганты, размеры которых достигают нескольких сантиметров. По форме клетки также весьма разнообразны: шаровидные, цилиндрические, овальные, веретеновидные, звездчатые и т. д. Однако между всеми клетками много общего. Они имеют одинаковый химический состав и общий план строения.

Химический состав клетки. Из всех известных химических элементов в живых организмах встречаются около 20, причем на долю 4 из них: кислорода, углерода, водорода и азота – приходится до 95 %. Эти элементы называют элементами-биогенами. Из неорганических веществ, входящих в состав живых организмов, наибольшее значение имеет вода. Ее содержание в клетке колеблется от 60 до 98 %. Кроме воды в клетке находятся и минеральные вещества, в основном в виде ионов. Это соединения железа, иода, хлора, фосфора, кальция, натрия, калия и т. д.

Кроме неорганических веществ в клетке присутствуют и органические вещества: белки, липиды (жиры), углеводы (сахара), нуклеиновые кислоты (ДНК, РНК). Они составляют основную массу клетки. Наиболее важными органическими веществами являются нуклеиновые кислоты и белки. Нуклеиновые кислоты (ДНК и РНК) участвуют в передаче наследственной информации, синтезе белков, регуляции всех процессов жизнедеятельности клетки.

Белки выполняют целый ряд функций: строительную, регуляторную, транспортную, сократительную, защитную, энергетическую. Но самой важной является ферментативная функция белков.

Ферменты – это биологические катализаторы, ускоряющие и регулирующие все многообразие химических реакций, протекающих в живых организмах. Ни одна реакция в живой клетке не протекает без участия ферментов.

Липиды и углеводы выполняют в основном строительную и энергетическую функции, являются запасными питательными веществами организма.

Так, фосфолипиды вместе с белками строят все мембранные структуры клетки. Высокомолекулярный углевод – целлюлоза образует клеточную оболочку растений и грибов.

Жиры, крахмал и гликоген являются запасными питательными веществами клетки и организма в целом. Глюкоза, фруктоза, сахароза и другие сахара входят в состав корней и листьев, плодов растений. Глюкоза является обязательным компонентом плазмы крови человека и многих животных. При расщеплении углеводов и жиров в организме выделяется большое количество энергии, необходимой для процессов жизнедеятельности.

Клеточные структуры. Клетка состоит из наружной клеточной мембраны, цитоплазмы с органеллами и ядра (рис. 48).




Рис. 48. Комбинированная схема строения животной (А) и растительной (Б) клетки: 1 – оболочка; 2 – наружная клеточная мембрана; 3 – ядро; 4 – хроматин; 5 – ядрышко; 6 – эндоплазматическая сеть (гладкая и гранулярная); 7 – митохондрии; 8 – хлоропласты; 9 – аппарат Гольджи; 10 – лизосома; 11 – клеточный центр; 12 – рибосомы; 13 – вакуоль; 14 – цитоплазма


Наружная клеточная мембрана – это одномембранная клеточная структура, которая ограничивает живое содержимое клетки всех организмов. Обладая избирательной проницаемостью, она защищает клетку, регулирует поступление веществ и обмен с внешней средой, поддерживает определенную форму клетки. Клетки растительных организмов, грибов, кроме мембраны снаружи имеют еще и оболочку. Эта неживая клеточная структура состоит из целлюлозы у растений и хитина – у грибов, придает прочность клетке, защищает ее, является «скелетом» растений и грибов.

В цитоплазме, полужидком содержимом клетки, находятся все органоиды.

Эндоплазматическая сеть пронизывает цитоплазму, обеспечивая сообщение между отдельными частями клетки и транспорт веществ. Различают гладкую и гранулярную ЭПС. На гранулярной ЭПС находятся рибосомы.

Рибосомы – это мелкие тельца грибовидной формы, на которых идет синтез белка в клетке.

Аппарат Гольджи обеспечивает упаковку и вынос синтезируемых веществ из клетки. Кроме того, из его структур образуются лизосомы. Эти шарообразные тельца содержат ферменты, которые расщепляют поступающие в клетку питательные вещества, обеспечивая внутриклеточное переваривание.

Митохондрии – это полуавтономные мембранные структуры продолговатой формы. Их число в клетках различно и увеличивается в результате деления. Митохондрии – это энергетические станции клетки. В процессе дыхания в них происходит окончательное окисление веществ кислородом воздуха. При этом выделяющаяся энергия запасается в молекулах АТФ, синтез которых происходит в этих структурах.

Хлоропласты, полуавтономные мембранные органеллы, характерны только для растительных клеток. Хлоропласты имеют зеленую окраску за счет пигмента хлорофилла, они обеспечивают процесс фотосинтеза.

Кроме хлоропластов растительные клетки имеют и вакуоли, заполненные клеточным соком.

Клеточный центр участвует в процессе деления клетки. Он состоит из двух центриолей и центросферы. Во время деления они образуют нити веретена деления и обеспечивают равномерное распределение хромосом в клетке.

Ядро – это центр регуляции жизнедеятельности клетки. Ядро отделено от цитоплазмы ядерной мембраной, в которой имеются поры. Внутри оно заполнено кариоплазмой, в которой находятся молекулы ДНК, обеспечивающие передачу наследственной информации. Здесь происходит синтез ДНК, РНК, рибосом. Часто в ядре можно увидеть одно или несколько темных округлых образований – это ядрышки. Здесь образуются и скапливаются рибосомы. В ядре молекулы ДНК не видны, так как находятся в виде тонких нитей хроматина. Перед делением ДНК спирализуются, утолщаются, образуют комплексы с белком и превращаются в хорошо заметные структуры – хромосомы (рис. 49). Обычно хромосомы в клетке парные, одинаковые по форме, величине и наследственной информации. Парные хромосомы называются гомологичными. Двойной парный набор хромосом называется диплоидным. В некоторых клетках и организмах содержится одинарный, непарный набор, который называется гаплоидным.



Рис. 49. А– строение хромосомы: 1 – центромера; 2 – плечи хромосомы; 3 – молекулы ДНК; 4 – сестринские хроматиды; Б – виды хромосом: 1 – равноплечная; 2 – разноплечная; 3 – одноплечная


Число хромосом для каждого вида организмов постоянно. Так, в клетках человека 46 хромосом (23 пары), в клетках пшеницы 28 (14 пар), голубя 80 (40 пар). Эти организмы содержат диплоидный набор хромосом. Некоторые организмы, такие, как водоросли, мхи, грибы, имеют гаплоидный набор хромосом. Половые клетки у всех организмов гаплоидны.

Кроме перечисленных, некоторые клетки имеют специфические органоиды – реснички и жгутики, обеспечивающие движение в основном у одноклеточных организмов, но имеются они и у некоторых клеток многоклеточных организмов. Например, жгутики имеются у эвглены зеленой, хламидомонады, некоторых бактерий, а реснички – у инфузорий, клеток ресничного эпителия животных.

§ 45. Особенности жизнедеятельности клетки

Обмен веществ и энергии в клетке. Основой жизнедеятельности клетки являются обмен веществ и превращение энергии. Совокупность химических превращений, протекающих в клетке или организме, связанных между собой и сопровождающихся превращением энергии, называется обменом веществ и энергии.

Синтез органических веществ, сопровождающийся поглощением энергии, называется ассимиляцией или пластическим обменом. Распад, расщепление органических веществ, сопровождающийся выделением энергии, называется диссимиляцией или энергетическим обменом.

Главным источником энергии на Земле является Солнце. Клетки растений специальными структурами в хлоропластах улавливают энергию Солнца, превращая ее в энергию химических связей молекул органических веществ и АТФ.

АТФ (аденозинтрифосфат) – это органическое вещество, универсальный аккумулятор энергии в биологических системах. Солнечная энергия превращается в энергию химических связей этого вещества и расходуется на синтез глюкозы, крахмала и других органических веществ.

Кислород атмосферы, как это ни покажется странным, – побочный продукт процесса жизнедеятельности растений – фотосинтеза.

Процесс синтеза органических веществ из неорганических под действием энергии Солнца называется фотосинтезом.

Обобщенное уравнение фотосинтеза можно представить в следующем виде:

6СО 2 + 6Н 2 О – свет > С 6 Н 12 О 6 + 6О 2 .

В растениях органические вещества создаются в процессе первичного синтеза из углекислого газа, воды и минеральных солей. Животные, грибы, многие бактерии используют готовые органические вещества (из растений). Кроме того, при фотосинтезе образуется кислород, который необходим живым организмам для дыхания.

В процессе питания и дыхания органические вещества расщепляются и окисляются кислородом. Освобождающаяся энергия частично выделяется в виде тепла, а частично вновь запасается в синтезируемых молекулах АТФ. Этот процесс протекает в митохондриях. Конечные продукты распада органических веществ – вода, углекислый газ, соединения аммиака, которые вновь используются в процессе фотосинтеза. Запасенная в АТФ энергия расходуется на вторичный синтез органических веществ, характерных для каждого организма, на рост, размножение.

Итак, растения обеспечивают все организмы не только питательными веществами, но и кислородом. Кроме того, они преобразуют энергию Солнца и передают ее через органические вещества всем другим группам организмов.

§ 46. Типы обмена веществ у организмов

Обмен веществ как основное свойство организмов. Организм находится в сложных взаимоотношениях с окружающей средой. Из нее он получает пищу, воду, кислород, свет, тепло. Создавая посредством этих веществ и энергии массу живого вещества, строит свое тело. Однако, используя эту среду, организм благодаря своей жизнедеятельности одновременно и воздействует на нее, изменяет ее. Следовательно, главным процессом взаимосвязи организма и среды является обмен веществ и энергией.

Типы обмена веществ. Факторы внешней среды имеют различное значение для разных организмов. Растениям для роста и развития необходимы свет, вода и углекислый газ, минеральные вещества. Животным и грибам такие условия недостаточны. Им необходимы питательные органические вещества. По способу питания, источнику получения органических веществ и энергии все организмы делятся на автотрофные и гетеротрофные.

Автотрофные организмы синтезируют органические вещества в процессе фотосинтеза из неорганических (углекислого газа, воды, минеральных солей), используя энергию солнечного света. К ним относятся все растительные организмы, фотосинтезирующие цианобактерии. К автотрофному питанию способны и хемосинтезирующие бактерии, использующие энергию, которая выделяется при окислении неорганических веществ: серы, железа, азота.

Процесс автотрофной ассимиляции осуществляется за счет энергии солнечного света или окисления неорганических веществ, а органические вещества синтезируются при этом из неорганических. В зависимости от поглощения неорганического вещества различают ассимиляцию углерода, ассимиляцию азота, ассимиляцию серы и других минеральных веществ. Автотрофная ассимиляция связана с процессами фотосинтеза и хемосинтеза и носит название первичного синтеза органического вещества.

Гетеротрофные организмы получают готовые органические вещества от автотрофов. Источником энергии для них является энергия, запасенная в органических веществах и выделяющаяся при химических реакциях распада и окисления этих веществ. К ним относятся животные, грибы, многие бактерии.

При гетеротрофной ассимиляции организм поглощает органические вещества в готовом виде и преобразует их в собственные органические вещества за счет энергии, содержащейся в поглощенных веществах. Гетеротрофная ассимиляция включает процессы потребления пищи, переваривания ее, усвоения и синтеза новых органических веществ. Этот процесс носит название вторичного синтеза органических веществ.

Процессы диссимиляции у организмов также различаются. Одним из них для жизнедеятельности необходим кислород – это аэробные организмы. Другим кислород не нужен, и процессы их жизнедеятельности могут протекать в бескислородной среде – это анаэробные организмы.

Различают внешнее дыхание и внутреннее. Газообмен между организмом и внешней средой, включающий в себя поглощение кислорода и выделение углекислого газа, а также транспорт этих веществ по организму к отдельным органам, тканям и клеткам, называется внешним дыханием. В этом процессе кислород не используется, а только транспортируется.

Внутреннее, или клеточное, дыхание включает в себя биохимические процессы, которые приводят к усвоению кислорода, освобождению энергии и образованию воды и углекислого газа. Эти процессы протекают в цитоплазме и митохондриях эукариотных клеток или на специальных мембранах прокариотных клеток.

Обобщенное уравнение процесса дыхания:

C 6 H 12 O 6 + 6O 2 > 6CO 2 + 6H 2 O.

2. Другой формой диссимиляции является анаэробное, или бескислородное, окисление. Процессы энергетического обмена в этом случае протекают по типу брожения. Брожение – это форма диссимиляции, при которой богатые энергией органические вещества расщепляются с освобождением энергии до менее богатых энергией, но тоже органических веществ.

В зависимости от конечных продуктов различают типы брожения: спиртовое, молочнокислое, уксуснокислое и т. д. Спиртовое брожение встречается у дрожжевых грибов, некоторых бактерий, а также протекает в некоторых растительных тканях. Молочнокислое брожение встречается у молочнокислых бактерий, а также протекает в мышечной ткани человека и животных при недостатке кислорода.

Взаимосвязь реакций обмена веществ у автотрофных и гетеротрофных организмов. Через процессы обмена веществ автотрофные и гетеротрофные организмы в природе связаны между собой (рис. 50).




Рис. 50. Поток вещества и энергии в биосфере


Самыми важными группами организмов являются автотрофы, которые способны синтезировать органические вещества из неорганических. Большинство автотрофов – зеленые растения, которые в процессе фотосинтеза превращают неорганический углерод – углекислый газ в сложные органические соединения. Зеленые растения выделяют при фотосинтезе также кислород, который необходим для дыхания живых существ.

Гетеротрофы усваивают только готовые органические вещества, получая энергию при их расщеплении. Автотрофные и гетеротрофные организмы связаны между собой процессами обмена веществ и энергий. Фотосинтез является практически единственным процессом, обеспечивающим организмы питательными веществами и кислородом.

Несмотря на большие масштабы фотосинтеза, зеленые растения Земли используют всего 1 % солнечной энергии, падающей на листья. Одна из важнейших задач биологии – повышение коэффициента использования солнечной энергии культурными растениями, создание продуктивных сортов.

В последние годы особое внимание привлекает к себе одноклеточная водоросль хлорелла, которая содержит в своем теле до 6 % хлорофилла и обладает замечательной способностью усваивать до 20 % солнечной энергии. При искусственном разведении хлорелла быстро размножается, а в ее клетке повышается содержание белка. Этот белок используется в качестве пищевых добавок ко многим продуктам. Установлено, что с 1 га водной поверхности можно получать ежедневно до 700 кг сухого вещества хлореллы. Кроме того, в хлорелле синтезируется большое количество витаминов.

Еще один интерес к хлорелле связан с космическими полетами. Хлорелла в искусственных условиях может обеспечить кислородом, выделяемым при фотосинтезе, космический корабль.

§ 47. Раздражимость и движение организмов

Понятие о раздражимости. Микроорганизмы, растения и животные реагируют на самые разнообразные воздействия окружающей среды: на механические воздействия (укол, давление, удар и т. д.), на изменение температуры, интенсивность и направление световых лучей, на звук, электрические раздражения, изменения в химическом составе воздуха, воды или почвы и т. д. Это приводит к определенным колебаниям организма между стабильным и нестабильным состоянием. Живые организмы способны в меру своего развития анализировать эти состояния и соответствующим образом реагировать на них. Подобные свойства всех организмов называются раздражимостью и возбудимостью.

Раздражимость – это способность организма реагировать на внешние или внутренние воздействия.

Раздражимость возникла у живых организмов как приспособление, обеспечивающее лучший обмен веществ и защиту от воздействий условий среды.

Возбудимость – это способность живых организмов воспринимать воздействия раздражителей и отвечать на них реакцией возбуждения.

Воздействие окружающей среды сказывается на состоянии клетки и ее органелл, тканей, органов и организма в целом. Организм отвечает на это соответствующими реакциями.

Простейшим проявлением раздражимости является движение. Оно характерно даже для самых простейших организмов. Это можно пронаблюдать в опыте над амебой под микроскопом. Если рядом с амебой поместить небольшие комочки пищи или кристаллики сахара, то она начинает активное движение в сторону питательного вещества. С помощью ложноножек амеба обволакивает комочек, вовлекая его внутрь клетки. Там сразу же образуется пищеварительная вакуоль, в которой пища переваривается.

С усложнением строения организма усложняются как обмен веществ, так и проявления раздражимости. У одноклеточных организмов и растений нет специальных органов, обеспечивающих восприятие и передачу раздражений, поступающих из окружающей среды. У многоклеточных животных имеются органы чувств и нервная система, благодаря которым они воспринимают раздражения, а ответы на них достигают большой точности и целесообразности.

Раздражимость у одноклеточных организмов. Таксисы.

Наиболее простые формы раздражимости наблюдаются у микроорганизмов (бактерий, одноклеточных грибов, водорослей, простейших).

В примере с амебой мы наблюдали движение амебы в сторону раздражителя (пища). Такая двигательная реакция одноклеточных организмов в ответ на раздражение из внешней среды называется таксисом. Таксис вызван химическим раздражением, поэтому его называют еще хемотаксисом (рис. 51).



Рис. 51. Хемотаксис у инфузорий


Таксисы могут быть положительными и отрицательными. Поместим пробирку с культурой инфузорий-туфелек в закрытую картонную коробочку с единственным отверстием, расположенным против средней части пробирки, и выставим ее на свет.

Через несколько часов все инфузории сконцентрируются в освещенной части пробирки. Это положительный фототаксис.

Таксисы свойственны многоклеточным животным. Например, лейкоциты крови проявляют положительный хемотаксис по отношению к веществам, выделяемым бактериями, концентрируются в местах скопления этих бактерий, захватывают и переваривают их.

Раздражимость у многоклеточных растений. Тропизмы. Хотя у многоклеточных растений нет органов чувств и нервной системы, тем не менее у них отчетливо проявляются различные формы раздражимости. Они заключаются в изменении направления роста растения или его органов (корня, стебля, листьев). Такие проявления раздражимости у многоклеточных растений называются тропизмами.

Стебель с листьями проявляют положительный фототропизм и растут по направлению к свету, а корень – отрицательный фототропизм (рис. 52). Растения реагируют на гравитационное поле Земли. Обратите внимание на деревья, растущие по склону горы. Хотя поверхность почвы имеет наклон, деревья растут вертикально. Реакция растений на земное притяжение называется геотропизмом (рис. 53). Корешок, который появляется из прорастающего семени, всегда направлен вниз к земле – положительный геотропизм. Побег с листьями, развивающийся из семени, всегда направлен вверх от земли – отрицательный геотропизм.

Тропизмы очень разнообразны и играют большую роль в жизни растений. Они ярко выражены в направлении роста у различных вьющихся и лазающих растений, например винограда, хмеля.



Рис. 52. Фототропизм



Рис. 53. Геотропизм: 1 – цветочный горшок с пря-морастущими проростками редиса; 2 – цветочный горшок, положенный набок и содержащийся в темноте для устранения фототропизма; 3 – проростки в цветочном горшке изогнулись в сторону, противоположную действию силы тяжести (стебли обладают отрицательным геотропизмом)


Помимо тропизмов, у растений наблюдаются движения иного типа – настии. Они отличаются от тропизмов отсутствием определенной ориентировки к вызвавшему их раздражителю. Например, если прикоснуться к листьям стыдливой мимозы, они быстро складываются в продольном направлении и опускаются книзу. Через некоторое время листья снова принимают прежнее положение (рис. 54).



Рис. 54. Настии у стыдливой мимозы: 1 – в нормальном состоянии; 2 – при раздражении


Цветки многих растений реагируют на свет и влажность. Например, у тюльпана на свету цветки раскрываются, а в темноте закрываются. У одуванчика соцветие закрывается в пасмурную погоду и открывается в ясную.

Раздражимость у многоклеточных животных. Рефлексы. В связи с развитием у многоклеточных животных нервной системы, органов чувств и органов движения формы раздражимости усложняются и зависят от тесного взаимодействия этих органов.

В простейшем виде такое раздражение возникает уже у кишечнополостных. Если уколоть иглой пресноводную гидру, то она сожмется в комочек. Внешнее раздражение воспринимает чувствительная клетка. Возникшее в ней возбуждение передается нервной клетке. Нервная клетка передает возбуждение кожно-мышечной клетке, которая реагирует на раздражение сокращением. Этот процесс называется рефлексом (отражением).

Рефлекс – это ответная реакция организма на раздражение, осуществляемая нервной системой.

Представление о рефлексе было высказано еще Декартом. Позднее оно было развито в трудах И. М. Сеченова, И. п. Павлова.

Путь, проходимый нервным возбуждением от воспринимающего раздражение органа до органа, выполняющего ответную реакцию, называется рефлекторной дугой.

У организмов с нервной системой существует два типа рефлексов: безусловные (врожденные) и условные (приобретенные). Условные рефлексы формируются на базе безусловных.

Любое раздражение вызывает изменение обмена веществ в клетках, что приводит к возникновению возбуждения и возникает ответная реакция.

§ 48. Жизненный цикл клетки

Период жизнедеятельности клетки, в котором происходят все процессы обмена веществ, называется жизненным циклом клетки.

Клеточный цикл состоит из интерфазы и деления.

Интерфаза – это период между двумя делениями клетки. Она характеризуется активными процессами обмена веществ, синтезом белка, РНК, накоплением питательных веществ клеткой, ростом и увеличением объема. К концу интерфазы происходит удвоение ДНК (репликация). В результате каждая хромосома содержит две молекулы ДНК и состоит из двух сестринских хроматид. Клетка готова к делению.

Деление клетки. Способность к делению – это важнейшее свойство клеточной жизнедеятельности. Механизм самовоспроизведения срабатывает уже на клеточном уровне. Наиболее распространенным способом деления клетки является митоз (рис. 55).



Рис. 55. Интерфаза (А) и фазы митоза (Б): 1 – профаза; 2 – метафаза; 3 – анафаза; 4 – телофаза

Митоз – это процесс образования двух дочерних клеток, идентичных исходной материнской клетке.

Митоз состоит из четырех последовательных фаз, обеспечивающих равномерное распределение генетической информации и органелл между двумя дочерними клетками.

1. В профазе ядерная мембрана исчезает, хромосомы максимально спирализуются, становятся хорошо заметными. Каждая хромосома состоит из двух сестринских хроматид. Центриоли клеточного центра расходятся к полюсам и образуют веретено деления.

2. В метафазе хромосомы располагаются в экваториальной зоне, нити веретена деления соединены с центромерами хромосом.

3. Анафаза характеризуется расхождением сестринских хроматид-хромосом к полюсам клетки. У каждого полюса оказывается столько же хромосом, сколько их было в исходной клетке.

4. В телофазе происходит деление цитоплазмы и органоидов, в центре клетки образуется перегородка из клеточной мембраны и возникают две новые дочерние клетки.

Весь процесс деления длится от нескольких минут до 3 ч в зависимости от типа клеток и организма. Стадия деления клетки по времени в несколько раз короче ее интерфазы. Биологический смысл митоза заключается в обеспечении постоянства числа хромосом и наследственной информации, полной идентичности исходных и вновь возникающих клеток.

§ 49. Формы размножения организмов

В природе существует два типа размножения организмов: бесполое и половое.

Бесполое размножение – это образование нового организма из одной клетки или группы клеток исходного материнского организма. В этом случае в размножении участвует только одна родительская особь, которая передает свою наследственную информацию дочерним особям.

В основе бесполого размножения лежит митоз. Существует несколько форм бесполого размножения.

Простое деление, или деление надвое, характерно для одноклеточных организмов. Из одной клетки путем митоза образуются две дочерние клетки, каждая из которых становится новым организмом.

Почкование – это форма бесполого размножения, при которой от родительской особи отделяется дочерний организм. Такая форма характерна для дрожжей, гидры и некоторых других животных.

У споровых растений (водорослей, мхов, папоротников) размножение происходит с помощью спор, специальных клеток, образующихся в материнском организме. Каждая спора, прорастая, дает начало новому организму.

Вегетативное размножение – это размножение отдельными органами, частями органов или тела. Оно основано на способности организмов восстанавливать недостающие части тела – регенерации. Встречается у растений (размножение стеблями, листьями, побегами), у низших беспозвоночных животных (кишечнополостных, плоских и кольчатых червей).

Половое размножение – это образование нового организма при участии двух родительских особей. Новый организм несет наследственную информацию от обоих родителей.

При половом размножении происходит слияние половых клеток – гамет мужского и женского организма. Половые клетки формируются в результате особого типа деления. В этом случае, в отличие от клеток взрослого организма, которые несут диплоидный (двойной) набор хромосом, образующиеся гаметы имеют гаплоидный (одинарный) набор. В результате оплодотворения парный, диплоидный набор хромосом восстанавливается. Одна хромосома из пары является отцовской, а другая – материнской. Гаметы образуются в половых железах или в специализированных клетках в процессе мейоза.

Мейоз – это такое деление клетки, при котором хромосомный набор клетки уменьшается вдвое (рис. 56). Такое деление называется редукционным.


Рис. 56. Фазы мейоза: А – первое деление; Б – второе деление. 1, 2 – профаза I; 3 – метафаза I; 4 – анафаза I; 5 – телофаза I; 6 – профаза II; 7 – метафаза II; 8 – анафаза II; 9 – телофаза II


Для мейоза характерны те же стадии, что и для митоза, но процесс состоит из двух последовательных делений (мейоз I и мейоз II). В результате образуется не две, а четыре клетки. Биологический смысл мейоза заключается в обеспечении постоянства числа хромосом у вновь образующихся организмов при оплодотворении. Женская половая клетка – яйцеклетка, всегда крупная, содержит много питательных веществ, часто неподвижная.

Мужские половые клетки – сперматозоиды, мелкие, часто подвижные, имеют жгутики, их образуется значительно больше, чем яйцеклеток. У семенных растений мужские гаметы неподвижны и называются спермиями.

Оплодотворение – процесс слияния мужских и женских половых клеток, в результате которого образуется зигота.

Из зиготы развивается зародыш, который дает начало новому организму.

Оплодотворение бывает наружным и внутренним. Наружное оплодотворение характерно для обитателей вод. Половые клетки выходят во внешнюю среду и сливаются вне организма (рыбы, земноводные, водоросли). Внутреннее оплодотворение характерно для наземных организмов. Оплодотворение происходит в женских половых органах. Зародыш может развиваться как в теле материнского организма (млекопитающие), так и вне его – в яйце (птицы, пресмыкающиеся, насекомые).

Биологическое значение оплодотворения состоит в том, что при слиянии гамет восстанавливается диплоидный набор хромосом, а новый организм несет наследственную информацию и признаки двух родителей. Это увеличивает разнообразие признаков организмов, повышает их жизнестойкость.

У фототрофных организмов в процессе фотосинтеза световая энергия превращается в химическую энергию сложных органических веществ, которые затем включаются в реакции дыхания и подвергаются биологическому окислению. В ходе дыхания значительная часть энергии окисления органических веществ используется для образования АТФ и других макроэргических соединений, с участием которых далее уже инициируются эндергонические реакции синтеза различных веществ, необходимых для обеспечения жизненных процессов организма. Энергия окисления органических веществ, трансформируемая в химическую энергию молекул АТФ, по флоэмной системе транспортируется в любые органы и ткани растения и может быть использована в них для осуществления биосинтетических процессов, внутриклеточного переноса веществ и ионов, инициации защитных реакций организма и др. У хемотрофных организмов происходят аналогичные процессы, связанные с окислением веществ и использованием их химической энергии для синтеза АТФ и других макроэргических соединений, которые далее включаются в различные сопряжённые биосинтетические процессы.

Таким образом, мы видим, что жизнедеятельность любых организмов складывается из двух противоположных процессов – распада веществ и сопряжённого с ним синтеза макроэргических соединений и биосинтетических процессов образования сложных веществ, в которых используется энергия макроэргических соединений. Процесс распада веществ, в ходе которого происходит ферментативное расщепление молекул углеводов, жиров, белков и др. соединений до более простых веществ и дальнейшее их окисление в реакциях дыхания, получил название катаболизма. А противоположный процесс синтеза сложных веществ, который сопровождается поглощением свободной энергии, называется анаболизмом. Оба эти процесса тесно связаны между собой в обмене веществ организма. Усиление биосинтетических реакций, характерных для процесса анаболизма, всегда требует активизации катаболизма, высвобождающего химическую энергию для синтеза макроэргических соединений, которые необходимы как биоэнергетические факторы сопряжения в анаболических реакциях. Общая направленность биоэнергетических процессов у растительных организмов, включающая процессы катаболизма и анаболизма, а также синтеза макроэргических соединений и их использования в биосинтетических реакциях схематически показана на рис. 14.

Как видно из этой схемы, в осуществлении биоэнергетических процессов важную роль играют макроэргические соединения и особенно АТФ как универсальный переносчик энергии от катаболических процессов к анаболическим. В отсутствие макроэргических соединений происходит разобщение анаболических и катаболических процессов, что приводит к прекращению нормального функционирования организма.

Вопросы для повторения.

    В чём состоят особенности функционирования биоэнергетических систем? 2. Как определить изменение внутренней энергии биохимической системы по теплоте сгорания реагирующих веществ и продуктов реакции? 3. Как оценить тепловой эффект биохимической реакции с использованием термодинамической функции, называемой энтальпией? 4. Каким образом используется термодинамическая функция энтропия для характеристики направленности биохимических превращений? 5. По каким термодинамическим критериям можно оценить экзергонические и эндергонические реакции? 6. С помощью каких расчётов можно определить изменение свободной энергии в ходе биохимических реакций? 7. Как определяется направленность и возможность самопроизвольного осуществления в окислительно-восстановительных реакциях? 8. Каковы особенности осуществления биохимических реакций в условиях физиологической среды? 9. Какие термодинамические принципы реализуются в ходе сопряжённого синтеза веществ? 10. Какова биологическая роль макроэргических соединений? 11. Какие известны разновидности макроэргических соединений? 12. В чём состоит роль АТФ как наиболее универсального макроэргического соединения? 13. Как происходит синтез АТФ в живых организмах? 14. Какова направленность биоэнергетических процессов в растительном организме? 15. В чём состоят биохимические особенности процессов катаболизма?

Резюме по модульной единице 6.

Совокупность всех биоэнергетических превращений в организме, обеспечивающих его нормальную жизнедеятельность в изменяющихся условиях окружающей среды, изучает раздел биохимии, называемый биохимической энергетикой. Для оценки энергетических параметров биохимических реакций используются термодинамические функции – внутренняя энергия системы, энтальпия, энтропия, свободная энергия Гиббса и др. Биохимические реакции осуществляются в открытых системах, которые обмениваются веществами и энергией с окружающей средой. Простейшая биохимическая система включает реагирующие вещества, продукты реакции, а также фермент, катализирующий данную реакцию. В связи с тем, что биохимические реакции протекают с очень высокой скоростью, а изменения внешней среды проходят относительно медленно, в биохимической энергетике принимается, что все процессы в организме осуществляются при постоянном давлении и постоянной температуре.

Изменение внутренней энергии системы определяется как алгебраическая сумма всех входящих в систему и выходящих из неё энергий. По изменению энтальпии определяются тепловые эффекты биохимических реакций (при Н<О реакция экзотермическая, при Н>О – эндотермическая). Изменение энтропии в ходе биохимических превращений используется для расчёта изменения свободной энергии. При самопроизвольных реакциях свободная энергия системы уменьшается (G<О), такие реакции называют экзергоническими. В ходе эндергонических реакций свободная энергия системы увеличивается (G>О).

Эндергонические реакции могут осуществляться самопроизвольно за счёт поглощения энергии, которая высвобождается в экзергонической реакции, при условии прохождения этих реакций в одной биохимической системе. Такие реакции называют сопряжёнными реакциями синтеза веществ. Коэффициент использования энергии при сопряжённом синтезе веществ составляет 40-60%. В сопряжённой экзергонической реакции превращению подвергаются вещества, называемые макроэргическими соединениями. В ходе превращения этих веществ высвобождается большое количество свободной энергии (при стандартных условиях –30-60 кДж/моль). К макроэргическим соединениям относятся нуклеозидполифосфаты (АТФ, ГТФ, ЦТФ, УТФ идр.), ацилфосфаты (1,3-дифосфоглицериновая кислота, ацетилфосфат), енолфосфаты (фосфоенолпировиноградная кислота), тиоэфиры (ацетилкофермент А, пропионил-кофермент А и др.), амидинфосфаты, имидазолы.

Макроэргические соединения синтезируются в ходе реакций распада веществ, называемых катаболическими реакциями, а используются для синтеза веществ в ходе анаболических реакций. Универсальным макроэргическим соединением является аденозинтрифосфорная кислота (АТФ), которая синтезируется в процессах субстратного, фотосинтетического и окислительного фосфорилирования. Концентрация АТФ в клетках организма поддерживается на определённом уровне с помощью регуляторных систем.

Тестовые задания к лекции 3. Тесты № 67-80.

Лекция 4. Ферменты.

Аннотация.

Излагаются строение, свойства и механизм действия ферментов. Указываются основные показатели, выражающие их каталитическую активность, а также активаторы и ингибиторы ферментов. Даются сведения об изоферментах, локализации ферментов и особеностях функционирования ферментных систем. Рассматриваются механизмы регуляции конститутивных ииндуцибельных ферментов. Объясняются принципы классификации ферментов и зависимость их активности от различных физиологических условий.

Ключевые слова: ферменты, каталитический (активный) центр фермента, гипотеза замка и ключа, гипотеза индуцированного соответствия, коферменты, железо-серные белки, катал, удельная и молярная активность ферментов, период полужизни фермента, изоферменты, константа Михаэлиса, активаторы и ингибиторы ферментов, конкурентные и неконкурентные ингибиторы, белковые ингибиторы ферментов, мультиферментные системы, конститутивные и индуцибельные ферменты, аллостерические ферменты, зимогены (проферменты), гормональная регуляция активности ферментов, оксидоредуктазы, трансферазы, гидролазы, лиазы, изомеразы, лигазы (синтетазы).

Рассматриваемые вопросы.

    Механизм действия ферментов.

    Строение двухкомпонентных ферментов.

    Каталитическая активность ферментов.

    Изоферменты.

    Изменение активности ферментов в зависимости от условий среды.

    Локализация ферментов.

    Регуляция ферментативных реакций.

    Классификация ферментов.

Модульная единица 7. Ферменты.

Цели и задачи изучения модульной единицы. Изучить строение, свойства и механизм действия ферментов, особенности регуляции ферментативных реакций и функционирования ферментных систем. Научить студентов использовать сведения о ферментах для прогнозирования интенсивности и направленности биохимических процессов в растениях при обосновании технологий выращивания сельскохо-зяйственных культур.

Все живые организмы, обитающие на Земле, с точки зрения термодинамики представляют собой открытые системы, способные активно организовывать поступление энергии и веществ извне. Энергия необходима для осуществления всех процессов жизнедеятельности, но, в первую очередь, для химического синтеза веществ, используемых для построения и восстановления структур клетки и организма. Откуда же живые организмы берут энергию? Живые существа способны использовать только два вида энергии – световую (энергию солнечного излучения) и химическую (энергию связей химических соединений) – и по этому признаку делятся на две группы: фототрофы ихемотрофы.

Для синтеза компонентов организма необходимо потребление извне химических элементов, используемых в качестве строительных блоков. Главным структурным элементом органических молекул является углерод. В зависомости от источников углерода

Кто как – фототрофы (растения) используют энергию солнечного излучения, гетеротрофы (грибы, животные) – энергию химических связей веществ, поступающих с пищей. Полученная энергия используется дальше для синтеза органических молекул, главным структурным элементом которых является углерод. В зависимости от источников углерода живые организмы делятся на две большие группы: автотрофы и гетеротрофы . Автотрофы специализируются на неорганических источниках углерода (воздух), а гетеротрофы должны кого-нибудь…съесть. Большинство живых организмов относится к фотоавтотрофам или хемогетеротрофам . Однако некоторые живые существа (эвглена зеленая, хламидомонада) в зависимости от условий обитания ведут себя как авто- либо гетеротрофы и составляют особую группу миксотрофных (авто-гетеротрофных) организмов.

Процесс потребления энергии и вещества называется питанием . Известны два типа питания: голозойный – посредством захвата частиц пищи внутрь тела, голофитный – без захвата, посредством всасывания растворенных веществ через поверхностные структуры организма. Пищевые вещества, попавшие в организм тем или иным способом, далее вовлекаются в обмен веществ.

Обмен веществ, или метаболизм представляет собой совокупность взаимосвязанных и сбалансированных процессов, включающих разнообразные химические превращения веществ в организме. Обязательным его условием является связь живых организмов с внешней средой. Из внешней среды живые существа получают элементы питания – воду, кислород и др. Во внешнюю среду они выделяют продукты своей жизнедеятельности. Такой взаимообмен обусловливает жизнь организмов: они растут, развиваются, изменяется их строение и свойства, но при этом не меняется главное качество – они остаются живыми!



Тела неорганической природы так же подвергаются воздействиям внешней среды и теряют при этом свои характерные качества, приобретают новые, испытывают превращения: железо превращается в ржавчину, камень в щебень, песок, пыль; окислы превращаются в кислоты и т.д.

По этому поводу философ Ф. Энгельс писал: «Скала, подвергшаяся выветриванию, уже больше не скала, металл в результате окисления превращается в ржавчину. Но то, что в неживых телах является причиной разрушения, у белка становится основным условием существования ».

Поглощение питательных веществ и выделение продуктов жизнедеятельности;

Синтез, использование и расщепление макромолекул.

Все разнообразные химические процессы, составляющие обмен веществ, делят на две группы – процессы ассимиляции и процессы диссимиляции.

Основу анаболизма (ассимиляции , или пластического обмена) составляют реакции синтеза, протекающие с потреблением энергии, – потребление и превращение поступающих в организм веществ в собственное его тело (компоненты клеток и отложение запасов, благодаря чему происходит накопление энергии). Метаболизм у авто- и гетеротрофных организмов характеризуется особенностями, касающимися способов построения структурных компонентов органических молекул.

Автотрофные организмы способны полностью самостоятельно синтезировать органические вещества из неорганических молекул, потребляемых из внешней среды:

Неорганические вещества (СО 2 , Н 2 О) фотосинтез биологические синтезы



Гетеротрофные организмы строят собственные органические вещества из органических компонентов пищи:

Органические вещества пищи (белки, жиры, углеводы) пищеварение простые органические молекулы (аминокислоты, жирные кислоты, моносахара) биологические синтезы макромолекулы тела (белки, жиры, углеводы).

Основу катаболизма (диссимиляции , или энергетического обмена) составляют реакции расщепления, сопровождающиеся высвобождением энергии, - окислительно-восстановительный процесс разрушения органических веществ и превращение их в более простые соединения, благодаря чему высвобождается ранее накопленная в ходе ассимиляции энергия, необходимая для осуществления жизнедеятельности (часть энергии рассевается в виде тепла, а другая ее часть аккумулируется в макроэргических связях АТФ); одновременно освобождаются ресурсы организма (ферменты и др.) для процесса ассимиляции.

Процессы анаболизма и катаболизма неразрывно связаны между собой. Все синтетические процессы нуждаются в энергии, поставляемой в ходе реакций диссимиляции. Сами же реакции расщепления протекают лишь при участии ферментов, синтезируемых в процессе ассимиляции. Однако обе эти стороны обмена веществ и энергии не всегда находятся в равновесии: в растущем организме преобладают процессы ассимиляции, а при интенсивных физических нагрузках и в старости – процессы диссимиляции. Таким образом, обмен веществ можно определить как последовательное потребление, превращение, использование, накопление и потерю веществ и энергии в живых организмах в процессе жизни, обусловливающие самообновление, самовоспроизведение и саморегуляцию, рост и развитие в условиях постоянно меняющейся окружающей среды и позволяющие адаптироваться в ней. Обмен веществ регулируется внутриклеточными, гормональными механизмами, координируемыми нервной системой.

Существование любого живого организма связано с непрерывным обменом вещественным, энергетическим и информационным с окружающей средой. Энергия, приходящая в систему расходуется на синтез биоэнергетических соединений на поддержание химических, астматических и электрических потенциалов, а так же их градиентов. В процессе жизнедеятельности происходит непрерывное превращение одних видов энергии в другие. Необходимо использовать термодинамику, как науку изучающую наиболее общие закономерности превращений различных видов энергии.

Термодинамической системой называется часть пространства с материальным содержанием, ограниченная некоторой оболочкой. Состояние системы характеризуется параметрами.

Экстенсивные параметры зависят от общего содержания вещества(масса или объем системы).

Интенсивные параметры не зависят от количества вещества в системе и стремится к выравниванию(температура, давление).

Возможно 3 вида термодинамических систем: изолированные, замкнутые и открытые.

Изолированные не могут обмениваться с окружающей средой ни энергией, ни веществом. Со временем такая система приходит в равновесное состояние, при котором все параметры одного значения. Такому состоянию соответствует наименьшее значение термодинамических потенциалов и максимальное значение энтропии.

Замкнутая система может обмениваться с окружающей средой веществом и информацией.

В открытой системе происходит обмен происходит обмен с окружающей средой веществом, энергией и информацией. Она может находится в стационарном состоянии. Стационарным называется состояние при котором параметры системы

могут принимать в разных точках системы разные значения, которые не изменяются по времени. Изменение любого параметра, приводят к изменению состояния системы. Переход из одного состояния в другое- процесс. Процесс называется обратимым , если система возвращается в исходное состояние через одни и те же состояния, что и в прямом направлении. Необходимым называется процесс , протекающий только в одном направлении. Характеристикой состояния системы являются термодинамические потенциалы. Внутренняя энергия равна сумме всех видов энергии частиц, их которых состоит система, за исключением кинетической и потенциальной энергии системы, как целого. Внутренняя энергия- функция состояния и определяется параметрами системы.

Рассмотрим взаимодействия системы с окружающей средой. Обмен энергией может происходить за счет количества теплоты и совершенствования системной работы. Количество теплоты - теплообмен.

Процесс изменения энергии зависит от вида процессов, от способа совершения работы или передачи теплоты. Существуют следующие способы совершения работы:

1. Механическая работа при перемещении тел.

2. Механическая работа при расширении газа.

3. Работа по переносу электрического заряда.

4. Работа при химических реакциях.

В обобщенном виде:

Если на систему действует несколько сил, то по 1-му закону термодинамики:

Работа связана с превращением различным видом энергии. Подразделяется несколько видов энергии по способности их превращения в другие виды:

1. А- максимальная эффективная энергия. К ней относятся: гравитационная, световая, ядерная.

2. В- химическая энергия может превращаться в тепловую и электрическую энергию.

3. С- тепловая энергия. Деградация высших форм энергии в низшие, основное эволюционное свойство изолированных систем.

Тепловая энергия - это особый вид энергии низшего качества, который не может переходить без потери в другие виды энергии, т.к. тепловая энергия связана с хаотическим движением молекул. Живые организмы не являются источником новой энергии. Окисление поступающих в живой организм веществ приводит к высвобождению в нем эквивалентного хождения энергии, связанных с химической формой или каким-то другим видом энергии. Важной характеристикой системы является термодинамический потенциал. Существует 4 потенциала:

Функции состояния, изменение которых дает определить выполнение полезной работы и количество теплоты поступления в систему при теплообмене, по знаку и величине потенциала, можно следить по направлению процесса, при достижении равновесия, термодинамический потенциал стремится к наименьшему значению.

1)
2)

3)

Изменение энтальпии учитывает тепловой эффект химической реакции.

4) Термодинамический потенциал Гиббса.

Т.о. изменение потенциалов характеризует работу всех видов сил производной системы и количество теплоты которой обменивается система с окружающей средой. Различают 4 способа теплообмена:

1. Теплопроводность связанная с переносом теплоты через ткани организма, связанные с законом Фурье:

2. Конвекция, количество теплоты, которое переносится потоками разной плотности и разной температуры. .

3. Излучение, возникает на границе системы в виде электромагнитных волн, закон Стефана-Больцмана:

Ti- собственная температура

Tc- температура среды

4. Испарение, связано с превращением вещества из жидкого состояния в газообразное.

С учетом всех видов теплообмена можно записать уравнение теплового баланса:

Процессы теплообмена могут как увеличивать, так и уменьшать теплоту энергии, за исключением энергии испарения, которая всегда уменьшает количество теплоты внутри системы. Поскольку организм является термостатической системой, то для поддержания внутри организма постоянной температуры не зависит от внешних условий, организм имеет многочисленные системы регуляции.

Химическая регуляция происходит за счет изменения окислительных процессов внутри организма. Однако, изменение интенсивности обмена веществ приводит к серьезным нарушениям жизнедеятельности организма.

Физическая терморегуляция позволяет изменять интенсивность теплопроводности, конвекции и испарения. Терморегуляция внутренних органов, в которых в основном происходит выделение теплоты, совершенствуется при помощи тока крови, которая обладает высокой теплопроводностью. Интенсивность процесса теплообмена регулируется за счет усиления или ослабления оттока крови и связано с расширением или сужением кровеносных сосудов и является ответом на изменение внешних условий. Если температура среды выше температуры тела, то дополнительная теплорегуляция достигается за счет усиления испарения с поверхности тела. Кроме естественной терморегуляции большое значение имеет искусственная терморегуляция, связанная с изолированием организма от неблагоприятных условий окружающей среды. Тепловой баланс можно проверить экспериментально, определить энергию выделения организмом и энергию питательных веществ поступающих в организм. Энергия высвобождения из организма эквивалента поступающего внутрь. Т.о. все процессы жизнедеятельности соответствуют 1-му началу термодинамики.

Второе начало термодинамики в применении к биосистемам:

Второе начало термодинамики указывает на качественное различие форм энергии. Тепловая энергия образуется в организме, является определенной формой связанной энергии, т.е. в процессе жизнедеятельности она не может не может быть полностью превращена в другие виды. Для описания связанной энергии используется понятие энтропии.

Энтропия является функцией состояния и определяется с точностью до произвольной постоянной. Для изолированных систем энтропия не убывает, т.е. при протекании внутри системы необратимых процессов, энтропия возрастает, а при обратимом не меняется. Говорят о запасе энергии в системе, наиболее важно знать какую работу она может совершить над внешними телами, либо внутри самой системы. Для этого используется свободная энергия или энергия Гиббса. Для биосистем, процессы протекают при постоянной температуре и мало изменяющейся плотности и объеме. Т.о. для нормальных условий, свободно превращается часть внутренней энергии системы одинаковое в системе как свободной энергии, так и энергии Гиббса. Т.о. для оценки возможностей работы живого организма необходимо учитывать изменения свободной энергии или потенциал Гиббса. Существуют методы расчета изменения потенциала Гиббса для химических реакций.

Однако для биологических систем закон возрастания энтропии не наблюдается, что послужило причиной сомнения возможности применения 2-го закона термодинамики для животных систем. Согласно формулировке этого закона, возрождения энтропии определяет направление большинства естественных процессов в природе. Однако, закон возрождения энтропии справедлив только в изолированной системе и не может быть применен к живому организму на основании того, что это открытая система. Для изолированной системе в состоянии равновесия энтропия максимальна, а все термодинамические потенциалы, в том и собственная энергия и энергия Гиббса оказывается минимальным. В открытой же системе в стационарном состоянии изменение энтропии может быть отрицательно, а значение F или G могут вообще не изменяться.

Для изолированных систем :

Для открытых систем:

2-е начало термодинамики для открытых систем впервые было сформулировано Пригожыным.

Изменение энтропии открытых систем можно представить виде 2-х частей.

Первое слагаемое определяет изменение энтропии за счет внешних процессов. Второе слагаемое определяет изменение энтропии за счет процессов, протекающих внутри системы.

Это связано с необратимостью процессов расщепления питательных веществ, выравниванием градиентов, что всегда сопровождается увеличением энтропии. Аналогично энтропии можно разделить потенциал Гиббса.

Внутренние процессы сопровождаются расходом и убыванием потенциала Гиббса, который за счет обмена с окружающей средой может как увеличиваться, так и уменьшаться. В общем случае знак и величина изменения энтропии в разные промежутки времени изменяются, поэтому удобно рассматривать скорость изменения энтропии в открытой системе.

Для поддержания жизнедеятельности необходимо непрерывное поступление в организм свободной энергии из окружающей среды для компенсации убыли свободной энергии за счет внутренних процессов. Уменьшение энтропии в животной системе в ходе потребления пищевых продуктов и солнечной энергии одновременно приводит к увеличению свободной энергии системы. Т.е. приток отрицательной энергии не связан с упорядочению живых структур. Деградация питательных веществ приводит к выделению свободной энергии необходимой организму. Поток отрицательной энтропии необходим для компенсации нарастания энтропии и убыли свободной энергии, которая происходит внутри клетки в результате самопроизвольных процессов жизнедеятельности. Т.о. открытая система представляет собой процесс круговорота и превращения свободной энергии. Если внутри открытой системы достигнуто равновесие в отношении температуры, то и процессы обмена с окружающей средой протекают равновесно. Устойчивым состоянием открытой системы является стационарное состояние. Термодинамические условия возникновения стационарного состояния является равенство между изменением энтропии внутри организма и потоком энтропии в окружающую среду. Т.е. для открытой системы условием стационарного состояния является:

Постоянство энтропии не означает термодинамическое равновесие с окружающей средой. Равновесие организма с окружающей средой означает биологическую смерть. Для открытой системы постоянство энтропии устанавливает стационарное состояние системы и характеризует не отсутствие обратимых процессов, как в случае равновесия в изолированной среде, а взаимодействие с окружающей средой в наиболее оптимальной форме. Т.о. 2-е начало термодинамики для открытых систем помогает указать на целесообразность стационарного состояния системы. Впервые этот принцип был сформулирован Пригожыным в виде теоремы:

В стационарном состоянии производство энтропии внутри системы имеет постоянную и наименьшую из всех возможных скоростей.

Теорема указывает на то, что стационарное состояние обеспечивает наименьшие потери свободной энергии. В таком состоянии организм функционирует наиболее эффективно.

Для нормального функционирования, поддержания процессов жизнеобеспечения, выполнения определенных функций организму необходима энергия. Течение любого процесса: физического, химического или информационного, возможно только при эффективной работе систем энергообеспечения .

Глюкоза является основным, но не единственным субстратом для выработки энергии в клетке. Вместе с углеводами в наш организм с пищей поступают жиры, белки и другие вещества, которые после расщепления также могут служить источниками энергии, превращаясь в вещества, включающиеся в биохимические реакции, протекающие в клетке.

Фундаментальные исследования в области теории информации привели к появлению понятия информационной энергии (или энергии информационного воздействия), как разности между определенностью и неопределенностью. Здесь же хотелось бы отметить, что клетка потребляет и тратит информационную энергию на ликвидацию неопределенности в каждый момент своего жизненного цикла. Это приводит к реализации жизненного цикла без увеличения энтропии.

Нарушение процессов энергетического обмена под влиянием различных воздействий приводит к сбоям на отдельных стадиях и вследствие этих сбоев к нарушению подсистемы жизнедеятельности клетки и всего организма в целом. Если количество и распространенность этих нарушений превышают компенсаторные возможности гомеостатических механизмов в организме, то система выходит из под управления, клетки перестают работать синхронно. На уровне организма это проявляется в виде различных патологических состояний.

Так, недостаток витамина B 1 , участвующего в работе некоторых ферментов, приводит к блокированию окисления пировиноградной кислоты, избыток гормонов щитовидной железы нарушает синтез АТФ и т.д. Смертельные исходы при инфаркте миокарда, отравлении угарным газом или цианистым калием также связаны с блокированием процесса клеточного дыхания путем ингибирования или разобщения последовательных реакций. Через подобные механизмы опосредованно и действие многих бактериальных токсинов.

Таким образом, функционирование клетки, ткани, органа, системы органов или организма как системы поддерживается саморегуляторными механизмами, оптимальное течение которых, в свою очередь, обеспечивается биофизическими, биохимическими, энергетическими и информационными процессами.

Литература
  1. Биофизика: Учеб. для студ. высш. учеб. заведений. – М.: Гуманит. изд. центр ВЛАДОС, 1999. – 288 с.
  2. Винчестер А. Основы современной биологии / Пер. с англ. М.Д. Гроздовой. – М.: Мир, 1967. – 328 с., ил.
  3. Робертис Э. де, Новинский В., Саэс Ф. Биология клетки / Под ред. С.Я. Залкинда; Пер. с англ. А.В. Михеевой, В.И. Самойлова, И.В. Цоглиной, Ю.А. Шаронова. – М.: Мир, 1973. – 488 с.
  4. Стратанович Р.Л. Теория информации. – М.: Сов. радио, 1975. – 424 с.
  5. Физиология человека: Учебник / Под ред. В.М. Смирнова. – М.: Медицина, 2001. – 608 с., ил.
  6. Физический энциклопедический словарь / Гл. ред. А.М. Прохоров. – М.: Сов. энциклопедия, 1983. – 928 с., ил.
  7. Эткинс П. Порядок и беспорядок в природе: Пер. с англ; Предисл. Ю.Г. Рудного. – М.: Мир, 1987. – 224 с., ил.
  8. Юсупов Г.А. Энергоинформационная медицина. Гомеопатия. Электропунктура по Р.Фоллю. – М.: Издательский дом “Московские новости”, 2000 – 331 с., ил.